Robb T. Koether

Hampden-Sydney College

Wed, Feb 15, 2017

«40>» «F)>r « > = E vQ



° Operators as Friends

9 Operators as Member Functions
@ Operators that Must be Member Functions
@ Unary Operators

e The Increment and Decrement Operators

0 Assignment

Robb T. Koether (Hampden-Sydney College) Friends and Unary Operators Wed, Feb 15, 2017 2/22



ﬂ Operators as Friends

9 Operators as Member Functions

@ Operators that Must be Member Functions
@ Unary Operators

Q The Increment and Decrement Operators

0 Assignment

«0O0>» «F» «)>» « Q>

it
v



Operators as Friends

Definition (Friend)
A friend of a class is a function or a class that is given access to the
private members of that class through the keyword friend.

@ The class must declare who its friends are.

Robb T. Koether (Hampden-Sydney College) Friends and Unary Operators Wed, Feb 15, 2017 4/22



Operators as Friends

Friends
class class—name
{

friend function(parameters) ;
friend other-class—name;

@ To make a function (an operator) or another class a friend of this
class, use the £riend keyword in the definition of this class.

Robb T. Koether (Hampden-Sydney College) Friends and Unary Operators Wed, Feb 15, 2017 5/22



Writing Operators as Friends

@ Declare the operator to be a friend of the class.
@ Write the operator as a non-member function, except that. . .

@ The operator may access the data members of the operands
directly.

Robb T. Koether (Hampden-Sydney College) Friends and Unary Operators Wed, Feb 15, 2017 6/22



Operators as Friends: Considerations

@ Advantages
@ Only one function call is needed (no facilitator or inspector needed).
e The operator has direct access to the data members.

@ Disadvantages
e “Friendship” violates the data-hiding principle.

@ Now that the function has access to the private data members, it can
do anything it wants.
@ The integrity of the class is no longer under the control of the class.

Robb T. Koether (Hampden-Sydney College) Friends and Unary Operators Wed, Feb 15, 2017 7122



Choosing a Method

@ The preferred method is to use facilitators.
@ Exceptions

@ Operators that must be member functions (e.g., =, [1).

e Unary operators (e.g., ++, -)

e Binary operators in which the left operand will always be an object
of the class (e.g., matrix multiplication).

@ In the exceptional cases, write the operator as a member function.
@ Only in very rare cases will we use friends.

Robb T. Koether (Hampden-Sydney College) Friends and Unary Operators Wed, Feb 15, 2017 8/22



0 Operators as Friends

Q Operators as Member Functions

@ Operators that Must be Member Functions
@ Unary Operators

Q The Increment and Decrement Operators

0 Assignment

«0O0>» «F» «)>» « Q>

it
v



Q Operators as Friends

Q Operators as Member Functions

@ Operators that Must be Member Functions
@ Unary Operators

O The Increment and Decrement Operators
Q Assignment

«40>» «F)>r «=) « > = Q>



@ The following operators must be implemented as member
functions.

e The assignment operator =.
e The subscript operator [].

«0O0>» «F» «)>» « Q>

it
v



typeZ operator|[] (typel) const;
typeZ& operator|[] (typel);

// Returns r-value

// Returns I-value
@ typel can be any type, but it is usually int
@ The operator will return a value of type2.

@ typel and typeZ2 can be the same.

«0O0>» «F» «)>» « Q>

it
v



int temp
list[i]

list[i + 1]

list[i];
llSt[l N l];

temps

1 E-velve

// 1- and r-values
// 1-value

«O0» «F»r « > o

a



0 Operators as Friends

Q Operators as Member Functions

@ Operators that Must be Member Functions
@ Unary Operators

Q The Increment and Decrement Operators

0 Assignment

«0O0>» «F» «)>» « Q>

it
v



Unary Operators

@ Unary operators should be implemented as member functions.
@ The operator is invoked by a single operand.

@ The expression xa is interpreted as a . operator=~ ()

@ There is no issue of left operand vs. right operand.

Robb T. Koether (Hampden-Sydney College) Friends and Unary Operators Wed, Feb 15, 2017 15/22



0 Operators as Friends

Q Operators as Member Functions

@ Operators that Must be Member Functions
@ Unary Operators

© The Increment and Decrement Operators

0 Assignment

«0O0>» «F» «)>» « Q>

it
v



The Pre-Increment Operator

The Pre-Increment Operator

type& type::operator++ ()
{

// Increment the object

return *this;

@ The pre-increment operator should return the object by reference.
@ The expression uses the returned value.
@ What will ++ (++a) do?

Robb T. Koether (Hampden-Sydney College) Friends and Unary Operators Wed, Feb 15, 2017 17/22




The Post-Increment Operator

@ The post-increment operator should return the object by value.

@ Include one unused and unnamed int parameter to distinguish
post-increment from pre-increment.

@ The designers of C++ apologize for this completely artificial
mechanism.

Robb T. Koether (Hampden-Sydney College) Friends and Unary Operators Wed, Feb 15, 2017 18/22



The Post-Increment Operator

The Post-Increment Operator

type type::operator++ (int)
{

type original = xthis;
// Increment the object

return original;

@ The expression uses the returned value.
@ What will (a++) ++ do?

@ What about ++ (a++) and (++a) ++?

Robb T. Koether (Hampden-Sydney College) Friends and Unary Operators Wed, Feb 15, 2017 19/22




The Increment and Decrement Operators

@ RationallIncrement.cpp.

(a++) ++, etc.

@ IncrementTest.cpp Will test ++ (++a), (++a) ++, ++ (a++),

Robb T. Koether (Hampden-Sydney College)

Friends and Unary Operators

= E E 9Dac
Wed, Feb 15, 2017

20/22



0 Operators as Friends

9 Operators as Member Functions

@ Operators that Must be Member Functions
@ Unary Operators

Q The Increment and Decrement Operators

O Assignment

«0>» «F>» « Er» « Q>

it
v



@ Read Sections 11.3, 11.6. I

«40>» «F)>r «=) « > = Q>




	Operators as Friends
	Operators as Member Functions
	Operators that Must be Member Functions
	Unary Operators

	The Increment and Decrement Operators
	Assignment

